Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.

Identifieur interne : 000028 ( Main/Exploration ); précédent : 000027; suivant : 000029

Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.

Auteurs : Samia Daldoul [Tunisie] ; Hatem Boubakri [Tunisie] ; Mahmoud Gargouri [Tunisie] ; Ahmed Mliki [Tunisie]

Source :

RBID : pubmed:32130616

Abstract

Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.

DOI: 10.1007/s11033-020-05363-0
PubMed: 32130616


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.</title>
<author>
<name sortKey="Daldoul, Samia" sort="Daldoul, Samia" uniqKey="Daldoul S" first="Samia" last="Daldoul">Samia Daldoul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia. samiabiotech@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boubakri, Hatem" sort="Boubakri, Hatem" uniqKey="Boubakri H" first="Hatem" last="Boubakri">Hatem Boubakri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gargouri, Mahmoud" sort="Gargouri, Mahmoud" uniqKey="Gargouri M" first="Mahmoud" last="Gargouri">Mahmoud Gargouri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mliki, Ahmed" sort="Mliki, Ahmed" uniqKey="Mliki A" first="Ahmed" last="Mliki">Ahmed Mliki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32130616</idno>
<idno type="pmid">32130616</idno>
<idno type="doi">10.1007/s11033-020-05363-0</idno>
<idno type="wicri:Area/Main/Corpus">000095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000095</idno>
<idno type="wicri:Area/Main/Curation">000095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000095</idno>
<idno type="wicri:Area/Main/Exploration">000095</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.</title>
<author>
<name sortKey="Daldoul, Samia" sort="Daldoul, Samia" uniqKey="Daldoul S" first="Samia" last="Daldoul">Samia Daldoul</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia. samiabiotech@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boubakri, Hatem" sort="Boubakri, Hatem" uniqKey="Boubakri H" first="Hatem" last="Boubakri">Hatem Boubakri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gargouri, Mahmoud" sort="Gargouri, Mahmoud" uniqKey="Gargouri M" first="Mahmoud" last="Gargouri">Mahmoud Gargouri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mliki, Ahmed" sort="Mliki, Ahmed" uniqKey="Mliki A" first="Ahmed" last="Mliki">Ahmed Mliki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif</wicri:regionArea>
<wicri:noRegion>Hammam-lif</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology reports</title>
<idno type="eISSN">1573-4978</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32130616</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4978</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>47</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology reports</Title>
<ISOAbbreviation>Mol Biol Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.</ArticleTitle>
<Pagination>
<MedlinePgn>3141-3153</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11033-020-05363-0</ELocationID>
<Abstract>
<AbstractText>Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daldoul</LastName>
<ForeName>Samia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia. samiabiotech@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boubakri</LastName>
<ForeName>Hatem</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gargouri</LastName>
<ForeName>Mahmoud</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mliki</LastName>
<ForeName>Ahmed</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Mol Biol Rep</MedlineTA>
<NlmUniqueID>0403234</NlmUniqueID>
<ISSNLinking>0301-4851</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Genetic engineering</Keyword>
<Keyword MajorTopicYN="N">MAS</Keyword>
<Keyword MajorTopicYN="N">Omics</Keyword>
<Keyword MajorTopicYN="N">Smart viticulture</Keyword>
<Keyword MajorTopicYN="N">Stress tolerance</Keyword>
<Keyword MajorTopicYN="N">Vitis</Keyword>
<Keyword MajorTopicYN="N">Wild grapevines</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32130616</ArticleId>
<ArticleId IdType="doi">10.1007/s11033-020-05363-0</ArticleId>
<ArticleId IdType="pii">10.1007/s11033-020-05363-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2013 Dec 16;14:882</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24341535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Oct;287:110178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31481199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012 May 03;5:213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22554261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2019 Jan 1;6:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30603094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5162-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 17;8:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Nov;200(3):834-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23905547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 12;8:505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28446914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Sep;52(9):1501-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Aug;34(8):1345-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Feb;116(3):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18064436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Dec;59(6):761-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15599508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Mar;32(3):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23233131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 May 12;8:758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28553300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Aug 1;185:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26264965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteome Sci. 2010 Aug 12;8:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20704748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 10;12:140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22882870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2006 Sep;33(3):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16850189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Mar 29;13:122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22455456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Mar 22;19(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29565279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Jan;237(1):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23053541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2015;9 Suppl 3:S5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26050794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2016 Mar;35(3):655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26687967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Oct 28;10:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2016;1359:263-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26619866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2013 Feb;250(1):129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22327469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Apr;67(9):2829-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27162276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Dec;25(12):4777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24319081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Nov;31(11):2109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22847334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Mar 1;68(7):1669-1687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 23;9(4):e95102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24759805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 08;5:686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 04;7:571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Apr;122(6):1059-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21188350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2019 Feb;165(2):330-342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30357847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2012 Jul;34(7):1335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 May;9(9):2503-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jan;31(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Nov;76(4):661-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 27;7:695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27303413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2013 Jun;250(3):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23090239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 09;5:644</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Feb;66(3):889-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25433029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Feb 28;8:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18307813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Aug;41(8):5329-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24859977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2017 Oct 18;4:17058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29051820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Mar 21;13:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1410-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2010 Nov;179(5):489-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21802607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jan 18;14:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23331995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jun 22;12(6):e0179730</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28640905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Sep;25(9):968-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16552595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5671-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 14;9(7):e102303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25019620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2014 Sep 24;1:14049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26504551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2007 Apr;7(2):111-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17136344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Aug 03;9:970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30123225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Oct 04;13:149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24093598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Mar 21;16:223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2011 Apr;101(4):502-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2011 Apr;248(2):415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20512385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Sep 17;18(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28926983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3530-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Nov 15;170(17):1491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23886738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Jul 1;170(10):923-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23541511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Sep;280(3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Aug;236(2):525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2745-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21504880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 Nov;86(4-5):527-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25190283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Jul 29;16(1):170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27473850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 10;7:633</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 07;8:487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28439278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Dec 21;4(12):e8365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 Oct 22;15(10):19162-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25340981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Sep;22(9):511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16872714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Feb;52(2):238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Dec;12(9):1231-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25431200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2009 Dec 30;10:89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20042081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pak J Biol Sci. 2007 Aug 15;10(16):2631-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070074</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Tunisie</li>
</country>
</list>
<tree>
<country name="Tunisie">
<noRegion>
<name sortKey="Daldoul, Samia" sort="Daldoul, Samia" uniqKey="Daldoul S" first="Samia" last="Daldoul">Samia Daldoul</name>
</noRegion>
<name sortKey="Boubakri, Hatem" sort="Boubakri, Hatem" uniqKey="Boubakri H" first="Hatem" last="Boubakri">Hatem Boubakri</name>
<name sortKey="Gargouri, Mahmoud" sort="Gargouri, Mahmoud" uniqKey="Gargouri M" first="Mahmoud" last="Gargouri">Mahmoud Gargouri</name>
<name sortKey="Mliki, Ahmed" sort="Mliki, Ahmed" uniqKey="Mliki A" first="Ahmed" last="Mliki">Ahmed Mliki</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000028 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000028 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32130616
   |texte=   Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32130616" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020